False (logic)
   HOME

TheInfoList



OR:

In
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises ...
, false or untrue is the state of possessing negative
truth value In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values (''true'' or '' false''). Computing In some progr ...
or a
nullary Arity () is the number of arguments or operands taken by a function, operation or relation in logic, mathematics, and computer science. In mathematics, arity may also be named ''rank'', but this word can have many other meanings in mathematics. ...
logical connective In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is a logical constant. They can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary co ...
. In a
truth-functional In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: The input and output of a truth function are all truth values; a truth function will always output exactly one ...
system of propositional logic, it is one of two postulated truth values, along with its
negation In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false ...
,
truth Truth is the property of being in accord with fact or reality.Merriam-Webster's Online Dictionarytruth 2005 In everyday language, truth is typically ascribed to things that aim to represent reality or otherwise correspond to it, such as beliefs ...
. Usual notations of the false are 0 (especially in
Boolean logic In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denote ...
and
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical discipli ...
), O (in
prefix notation Polish notation (PN), also known as normal Polish notation (NPN), Łukasiewicz notation, Warsaw notation, Polish prefix notation or simply prefix notation, is a mathematical notation in which operators ''precede'' their operands, in contrast t ...
, O''pq''), and the
up tack The up tack or falsum (⊥, \bot in LaTeX, U+22A5 in Unicode) is a constant symbol used to represent: * The truth value 'false', or a logical constant denoting a proposition in logic that is always false (often called "falsum" or "absurdum"). * T ...
symbol \bot. Another approach is used for several
formal theories Formal, formality, informal or informality imply the complying with, or not complying with, some set of requirements (forms, in Ancient Greek). They may refer to: Dress code and events * Formal wear, attire for formal events * Semi-formal attire ...
(e.g., intuitionistic propositional calculus), where a propositional constant (i.e. a nullary connective), \bot, is introduced, the truth value of which being always false in the sense above. It can be treated as an absurd proposition, and is often called absurdity.


In classical logic and Boolean logic

In
Boolean logic In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denote ...
, each variable denotes a
truth value In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values (''true'' or '' false''). Computing In some progr ...
which can be either true (1), or false (0). In a classical
propositional calculus Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions (which can be true or false) and relations b ...
, each
proposition In logic and linguistics, a proposition is the meaning of a declarative sentence. In philosophy, " meaning" is understood to be a non-linguistic entity which is shared by all sentences with the same meaning. Equivalently, a proposition is the no ...
will be assigned a truth value of either true or false. Some systems of classical logic include dedicated symbols for false (0 or \bot), while others instead rely upon formulas such as and . In both Boolean logic and Classical logic systems, true and false are opposite with respect to
negation In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false ...
; the negation of false gives true, and the negation of true gives false. The negation of false is equivalent to the truth not only in classical logic and Boolean logic, but also in most other logical systems, as explained below.


False, negation and contradiction

In most logical systems,
negation In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false ...
,
material conditional The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol \rightarrow is interpreted as material implication, a formula P \rightarrow Q is true unless P is true and Q is ...
and false are related as: : In fact, this is the definition of negation in some systems,Dov M. Gabbay and Franz Guenthner (eds), ''Handbook of Philosophical Logic, Volume 6'', 2nd ed, Springer, 2002,
p. 12.
/ref> such as
intuitionistic logic Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems ...
, and can be proven in propositional calculi where negation is a fundamental connective. Because is usually a theorem or axiom, a consequence is that the negation of false () is true. A
contradiction In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's ...
is the situation that arises when a statement that is assumed to be true is shown to
entail In English common law, fee tail or entail is a form of trust established by deed or settlement which restricts the sale or inheritance of an estate in real property and prevents the property from being sold, devised by will, or otherwise alien ...
false (i.e., ). Using the equivalence above, the fact that φ is a contradiction may be derived, for example, from . A statement that entails false itself is sometimes called a contradiction, and contradictions and false are sometimes not distinguished, especially due to the
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
term ''
falsum The up tack or falsum (⊥, \bot in LaTeX, U+22A5 in Unicode) is a constant symbol used to represent: * The truth value 'false', or a logical constant denoting a proposition in logic that is always false (often called "falsum" or "absurdum"). * ...
'' being used in English to denote either, but false is one specific
proposition In logic and linguistics, a proposition is the meaning of a declarative sentence. In philosophy, " meaning" is understood to be a non-linguistic entity which is shared by all sentences with the same meaning. Equivalently, a proposition is the no ...
. Logical systems may or may not contain the
principle of explosion In classical logic, intuitionistic logic and similar logical systems, the principle of explosion (, 'from falsehood, anything ollows; or ), or the principle of Pseudo-Scotus, is the law according to which any statement can be proven from a co ...
(''ex falso quodlibet'' in
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
), for all . By that principle, contradictions and false are equivalent, since each entails the other.


Consistency

A formal theory using the "\bot" connective is defined to be consistent, if and only if the false is not among its
theorem In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of th ...
s. In the absence of propositional constants, some substitutes (such as the ones described above) may be used instead to define consistency.


See also

*
Contradiction In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's ...
*
Logical truth Logical truth is one of the most fundamental concepts in logic. Broadly speaking, a logical truth is a statement which is true regardless of the truth or falsity of its constituent propositions. In other words, a logical truth is a statement whic ...
*
Tautology (logic) In mathematical logic, a tautology (from el, ταυτολογία) is a formula or assertion that is true in every possible interpretation. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always ...
(for symbolism of logical truth) *
Truth table A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional argumen ...


References

{{Common logical symbols Logical connectives